

Mark Scheme (Results)

June 2016

Pearson Edexcel International GCSE Mathematics B (4MB0)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4MB0_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as they
 mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Internation	International GCSE Maths					
Q	Working	Answer	Mark	Notes		
1	$\frac{-4 - (-1)}{-3 - 6}$ OR $\frac{-1 - (-4)}{6 - (-3)}$ (o.e.)		2	M1		
		$\frac{1}{3}$ (oe), 0.33		A1		
				Total 2 marks		

2	$2(9x^2-y^2)$		2	M1	
	OR				
	(6x-2y)(3x+y)				
	OR				
	(3x-y)(6x+2y)				
		2(3x-y)(3x+y)		A1 Allow ISW	
				Total 2 marl	ΚS

3	$\frac{2.09 - 1.91}{1.91} \times 100 \left(= \frac{0.18}{1.91} \times 100 \right)$		2	M1
		9.42% (awrt)		A1
				Total 2 marks

4	$9b^3$	2	M1	
	OR a^{-1} (o.e.)			
	OR a^{-1} (o.e.) OR $\frac{36b^{3}}{4a}$			
	$9b^3a^{-1}$ or $\frac{9b^3}{a}$		A1	ISW
				Total 2 marks

5	Diagram showing correct bearing angle at		2	M1
	Nashik			
	OR 142+180			
	OR 360 – 38			
		322°		A1
				Total 2 marks

6	3-2(3-2x)		M1
		-3+4x (oe)	A1
			Total 2 marks

7	$A \cup B = \{a, b, c, d, e, g, i\}$	2	B1	
	$(A \cup D)' (f \vdash f)$		D 1	Condona missina kusakata
	$(A \cup B)' = \{f, h, j\}$		B1 ft	Condone missing brackets
	OR (1) B2(-1eeoo) if		10	
	$A \cup B = \{a, b, c, d, e, g, i\}$ not seen			
	OR (2) Venn Diagram showing correct			
	elements in A and B scores B1			
	then Venn Diagram showing correct elements in $(A \cup B)'$ scores B1 (unless			
	'condemned' on the answer line then NO			
	isw)			
				Total 2 marks

8	$\frac{1}{2}(23+59)h = 574$		2	M1
	OR $h = \frac{574}{\frac{1}{2}(23+59)} \left(= \frac{1148}{82} = \frac{574}{41} \right)$	h = 14		A1
		<i>π</i> – 1 +		Total 2 marks

9	$\frac{3.2x - 5.x}{x.2x}$ (oe)		M1
		$\frac{1}{2x}$ (oe)	A1
			Total 2 marks

10	2(3x-1)-6x+7		2	M1
	OR			
	$2p^2 - 2(p^2 + 1) + 7$			
		5		A1
				Total 2 marks

11 a	318	1	B1 ft on "(a)" and their "3.18" does
			not have to be rounded but is
			"correct"
b	"3.18" ×10 ⁿ	2	B1 (attempt at SF (overlook incorrect
			ft truncation of "3.18"))
	"3.18" ×10 ²		B1
	5.10 ×10		ft
			Total 3 marks

12	6x-8-4+12x=3x+12		M1	allow one sign slip
	6x+12x-3x=12+8+4		M1	gathering "terms"
			(DEP)	
		24 8	A 1	
		$1.6, \frac{1}{15}, \frac{1}{5}$		
				Total 3 marks

12	. 20.40		2	M1
13	x: y = 30:48		3	M1
	and $y: z = 48:56$			
	10.20			
	$ \begin{array}{cccc} OR & x: & y: & z \\ & 30 & 48 \end{array} $			
	30 48			
	30 70			
	48 56 (oe)			
	OR			
	$\frac{x}{y} = \frac{5}{8}$ and $\frac{y}{z} = \frac{6}{7}$			
	$\frac{1}{v} \frac{8}{8} \frac{1}{z} \frac{7}{7}$			
	x: z = 30:56			M1
				(DEP)
	OR			
	$\frac{x}{y} = \frac{x}{2} = \frac{30}{2}$			
	$\frac{-}{y} \frac{-}{z} \frac{-}{z} \frac{-}{56}$			
	y & & 50			
		x: z = 15:28		A1
				Total 3 marks

14	$\frac{3x}{2} + (2x+5) = (4x-15)$		3	M1 (geometrical statement)
	Either $5+15=4x-2x-\frac{3x}{2}$			M1 (DEP)
	OR $10+30=8x-4x-3x$			
	OR $\frac{3x}{2} + (2x+5) + \{180 - (4x-15)\} = 180$			M1
	$\frac{3x}{2} + 2x - 4x = 180 - 5 - 180 - 15$			M1 (DEP)
	OR $4x-15+y=180$ and			M1
	$2x + 5 + \frac{3x}{2} + y = 180$			
	Correctly eliminating			M1
				(DEP
		x=40		A1
				Total 3 marks

15	n=2m	3	B1	
	OR $m=1-2m$ seen			
	m=1-2m seen			
	$m = \frac{1}{3}$, 0.333		B1	
	$n = \frac{2}{3}$, 0.667		B1	
				Total 3 marks

OR $x + \frac{1}{2} > 3x - 5$ $11 > 4x \text{ OR } -11 < -4x$ OR $5 \frac{1}{2} > 2x \text{ OR } -5.5 < -2x$ $x = 2$ A1 Use of equality instead of inequality scores M1 M1 A0 $x = 2 \text{ seen and no incorrect}$ Must examine inequality at one of $x = 2$ and $x = 3$ Examined at both $x = 2$ and $x = 3$ $x = 2$ M1 $x = 2$ M1 $x = 2$ M1 $x = 2 \text{ seen implies full marks}$ M1 $x = 2$ $x = 3$ x					3.54	
$x + \frac{1}{2} > 3x - 5$ $11 > 4x \text{ OR } -11 < -4x$ OR $5 \frac{1}{2} > 2x \text{ OR } -5.5 < -2x$ $x = 2$ $A1 \text{ Use of equality instead of inequality scores M1 M1 A0}$ $Trial \text{ and Error Method:}$ $Must examine inequality at one of x = 2 and x = 3 Examined \text{ at both } x = 2 \text{ and } x = 3 M1 (DEP) x = 2$	16	2x+1 > 6x-10		3	M1	
$x + \frac{1}{2} > 3x - 5$ $11 > 4x \text{ OR } -11 < -4x$ OR $5 \frac{1}{2} > 2x \text{ OR } -5.5 < -2x$ $x = 2$ $A1 \text{ Use of equality instead of inequality scores M1 M1 A0}$ $Trial \text{ and Error Method:}$ $Must examine inequality at one of x = 2 and x = 3 Examined \text{ at both } x = 2 \text{ and } x = 3 M1 (DEP) x = 2$						
$x + \frac{1}{2} > 3x - 5$ $11 > 4x \text{ OR } -11 < -4x$ OR $5 \frac{1}{2} > 2x \text{ OR } -5.5 < -2x$ $x = 2$ $A1 \text{ Use of equality instead of inequality scores M1 M1 A0}$ $Trial \text{ and Error Method:}$ $Must examine inequality at one of x = 2 and x = 3 Examined \text{ at both } x = 2 \text{ and } x = 3 M1 (DEP) x = 2 M1 (DEP) A1$		OR				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$r + \frac{1}{x} > 3r - 5$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{x+7}{2} > 3x-3$				
OR $5\frac{1}{2} > 2x$ OR $-5.5 < -2x$ $x=2$ A1 Use of equality instead of inequality scores M1 M1 A0 Trial and Error Method: Must examine inequality at one of $x=2$ and $x=3$ Examined at both $x=2$ and $x=3$ $x=2$ M1 working seen implies full marks M1 (DEP) $x=2$					N/I 1	
OR $5\frac{1}{2} > 2x$ OR $-5.5 < -2x$ $x=2$ A1 Use of equality instead of inequality scores M1 M1 A0 Trial and Error Method: Must examine inequality at one of $x=2$ and $x=3$ Examined at both $x=2$ and $x=3$ $x=2$ M1 working seen implies full marks M1 (DEP) A1		11 > 4x OR $-11 < -4x$				
					(DEP)	
Trial and Error Method: Must examine inequality at one of $x = 2$ Examined at both $x = 2$ and $x = 3$ $x = 2$ M1 Wise of equality instead of inequality scores M1 M1 A0 $x = 2$ seen and no incorrect M1 working seen implies full marks M1 (DEP) A1		OR				
Trial and Error Method: $x=2$ A1 Use of equality instead of inequality scores M1 M1 A0Must examine inequality at one of $x=2$ and $x=3$ $x=2$ seen and no incorrect working seen implies full marksExamined at both $x=2$ and $x=3$ M1 (DEP) $x=2$ A1		1				
Trial and Error Method: Must examine inequality at one of $x = 2$ Examined at both $x = 2$ and $x = 3$ $x = 2$ M1 Wise of equality instead of inequality scores M1 M1 A0 $x = 2$ seen and no incorrect M1 working seen implies full marks M1 (DEP) A1		$5\frac{1}{2} > 2x$ OR $-5.5 < -2x$				
Trial and Error Method: Must examine inequality at one of $x = 2$ and $x = 3$ Examined at both $x = 2$ and $x = 3$ $x = 2$ $x = 2$ M1 working seen implies full marks M1 (DEP) $x = 2$		2				
Trial and Error Method: Must examine inequality at one of $x = 2$ and $x = 3$ Examined at both $x = 2$ and $x = 3$ $x = 2$ $x = 2$ M1 working seen implies full marks M1 (DEP) $x = 2$			x=2		A1	Use of equality instead of
Trial and Error Method: Must examine inequality at one of $x = 2$ and $x = 3$ Examined at both $x = 2$ and $x = 3$ $x = 2$ seen and no incorrect M1 working seen implies full marks M1 (DEP) A1						- ·
Must examine inequality at one of $x = 2$ and $x = 3$ $= 2$ $= 2$ $= 3$ $= 2$ $= 3$		Trial and France Made adv				· •
and $x = 3$ Examined at both $x = 2$ and $x = 3$ x = 2 M1 (DEP) A1						
Examined at both $x = 2$ and $x = 3$ $x = 2$ M1 (DEP) A1		Must examine inequality at one of $x = 2$			Ml	working seen implies full marks
x = 2 (DEP) A1		and $x = 3$				
x = 2 (DEP) A1		Examined at both $x = 2$ and $x = 3$			M1	
x=2 A1						
					` '	
		x=2			A1	
Total 3 mark						Total 3 marks

17	$x^2 + 9 = (x + y)^2$		4	M1
	$x^2 + 9 = x^2 + 2yx + y^2 \qquad \text{(expanding)}$			M1
	2			(DEP)
	$9 - y^2 = 2yx$ (gathering terms)			M1 (DEP)
		$x = \frac{9 - y^2}{2y}$, $\frac{y^2 - 9}{-2y}$, (oe)		A1
		2y $-2y$		
				Total 4 marks

18 a	6.9+7.5		2	M1
	2			
		7.2		A1
b	$\frac{5.9+6.3+}{5.9+6.3+} = \frac{58.4}{5.9+6.3+}$		2	M1
	8 - 8			
		7.3		A1
				Total 4 marks

19 ai	y=-x $y=x+2$	y = -x (line going through (-4, 4) and	B1	Penalise missing label once only in part (a) (ie deduct 1 st
		(1.5, -1.5))		mark)
	A			
	5 4 -1 1 2 3 4 4 5 C			
	2			
	_4 B			
	.5			
aii		y = x + 2 (line going through (-3, -1) and	B1	
		(1, 3))		
b		<i>B</i> (0, -3)	B1	B and C interchanged B1 B0
		<i>C</i> (-3, -1)	B1	Accept points (with coords)
				clearly identified on the diagram
				Total 4 marks

20	$256 = \frac{k}{(1/2)^3}$		M1
	k = 32		A1
	$\frac{4}{27} = \frac{"k"}{x^3} \qquad (x^3 = 216)$		M1 (DEP)
	OR $\frac{x^3}{\frac{1}{8}} = \frac{256}{\frac{4}{27}}$ (oe)		
	OR $\frac{x^3}{\frac{1}{8}} = \frac{256}{\frac{4}{27}}$ (oe)		M1 A1 M1 (DEP)`
		x = awrt 6.00	A1
			Total 4 mark

21 a		2, 4, 8, 16	2	B2 (-1eeoo)	Allow B1 for 1, 2, 4, 8 OR 2, 4, 6, 8
		OR			, ,
		$2^{1}, 2^{2}, 2^{3}, 2^{4}$			
b	2 ⁵⁰⁰		3	M1	
	$\frac{2^{500}}{2^{488}}$				
c		2 ¹² or 4096		A1	
		or 4093 (if working to 3sf)			
		8 ⁴ (cao)		A1	
					Total 5 marks

22 a	$5t^2 - 9t - 2$ (oe)		2	B2 Allow ISW (-1 eeoo)
b	$5t^2 - 9t - 2'' = 0$		3	M1
	Attempt to factorise/solve a trinomial quadratic should be $(5t+1)(t-2)$			M1 (DEP)
	OR $\frac{9 \pm \sqrt{81 - (4 \times 5 \times -2)}}{2 \times 5}$			
	2×3	t=2		A1
				Total 5 marks

23 a	A A A A A A A A A A A A A A A A A A A	90°	1	B1
b		$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	2	B2 (-1 eeoo)
С		$\begin{pmatrix} -1 \\ -6 \end{pmatrix}$	2	B1 ft Ft from diagram only and B1 ft added shape must be correct.
				Total 5 marks

24 a	$(6x^{2}+kx-6)(x-4) = 6x^{3} + (k-24)x^{2} - (6+4k)x + 24$ $= 6x^{3} + (k-24)x^{2} - (6+4k)x + 24$ $-26 = -4k - 6 \text{ or } -19 = k - 24$ OR $6x^{3} - 24x^{2} + 5x^{2} - 20x - 6x + 24 \text{ (expanding brackets with } k = 5)$ OR $x - 4\sqrt{6x^{3} - 19x^{2} - 26x + 24} $ (division correct) OR Synthetic division: $4 6 - 19 - 26 + 24$ $ 24 20 - 24$ $ \frac{6}{6} 5 - 6 0$		2	M1 Algebra must be correct for the M mark
		k = 5 (cc)		A1
b	Attempt to factorise quadratic $6x^2 + 5x - 6$		2	M1
		(2x+3)(3x-2)		A1
		(x-4)(2x+3)(3x-2)		A1
				Total 5 marks

25 a	$\frac{120}{360} \times 2 \times \pi \times 14$		2	M1	Penalise incorrect rounding only once in the question
		29.3 cm		A1	
b	"29.3"		2	M1	
	$\frac{"29.3"}{2\times\pi}$				
	Alternative: (Area of sector $OABC = 205 \text{ cm}^2$)				
	$\therefore \pi \times r_{Cone} \times 14 = "205"$				
	$\therefore \mathbf{r}_{Cone} = \frac{"205"}{\pi \times 14}$				
	$\pi \times 14$	1.66 (0.00)			
		4.66 cm (from 29.3),		A1	
		4.67 cm (accept 14/3			
		which is exact)			
С	$\sqrt{14^2 - ("4.66")^2}$		2	M1	
		13.2 cm		A1	
		15.2 CIII		711	Total 6 marks

26 a		run 2	3	В3	-1 penalty for each incorrect pair
		rain does not run $\frac{1}{3}$ 1 - p			
		$\frac{2}{3} \qquad \text{not raining} \qquad \frac{\frac{4}{5}}{3}$			
		$\frac{1}{5}$ does not run			
b	"\frac{2}{3}"\times"\frac{4}{5}"		2	M1	
		$\frac{1}{3}p + \frac{2}{3} \times \frac{4}{5} = \frac{37}{60}$ (oe)		A1	
С	$\frac{1}{3}p = \frac{37}{60} - \frac{2}{3} \times \frac{4}{5}$ (gathering terms in p) OR $p = \frac{37}{20} - \frac{2}{3} \times \frac{4}{5} \times 3$		2	M1	Accept 1/3(1- p)=37/60for (M1)
		$p = \frac{1}{4}$ (o.e.)		A1	No retrospective award of A1
					from (b) in (c) Total 7 marks
L				1	

27 a	$EF^2 = (\sqrt{135})^2 - (\sqrt{35})^2$		N	11
		EF = awrt10.0 cm	A	.1
b	$AC: CF \times AF = FD^2$ gives		N	[1
	$("10"-2.5)\times(("10"-2.5)+AC)=(\sqrt{135})^2$			
	$56.25 + 7.5 \times AC = 135 (AC = 10.5)$		A	1
	OR		N	[1
	$("10"-2.5)\times("10"+AE) = (\sqrt{135})^2$			
		$75 + 7.5 \times AE = 135$	A	1
		AE = 8 cm	A	.1
		(correctly shown)		
С	$EB \times \sqrt{35} = 8 \times 2.5$		N	[1
		3.38	A	1 Apply 3 sf penalty here.
				Total 7 marks

28	Method without need to use BD:		6	
	$\angle BAC = 90 - 62$			M1
		$\angle BAC = 28$		A1
	$\frac{40}{\sin 54} = \frac{BC}{\sin 28}$			M1
	5111.51 5111.20	BC = 23.212		A1
	$Area = \frac{1}{2} \times 40 \times "BC" \times \sin(62 + 36)$			M1 (DEP)
	Area = $\frac{1}{2} \times 40 \times 23.2119\sin(98)$			
		460 (459.720) cm ²		A1

28	Right Angled Triangle Method		6	
	Area = $\frac{1}{2} \times BD \times AC$:			M1
	$\frac{BD}{40} = \sin 28$			
		<i>BD</i> = <i>awrt</i> 18.8 (18.77886)		A1
	Correct Pythag/trig to find AD or DC			M1
		AD =awrt 35.3, 35.4 OR DC = awrt 13.6, 13.7		A1
	Area =			M1
	$\frac{1}{2}$ × "18.77886" × ("35.3179" + "13.6436")			(DEP)
		Area = 459, 460, 461		A1

28	Methods NOT using 90° triangle (1)		6	
	$Area = \frac{1}{2} \times AB \times BC \times \sin 98$			M1
	$\frac{BD}{40} = \sin 28$			
		<i>BD</i> = <i>awrt</i> 18.8 (18.77886)		A1
	$\frac{"18.77886"}{"} = \sin 54$			M1
	BC Sinc :			(DEP)
`		BC = awrt 23.2		A1
	OR $\angle BAD = 180 - (90 + 62)$			M1
		∠ <i>BAD</i> = 28		A1
	$\frac{40}{\sin 54} = \frac{BC}{\sin 28}$			M1
		BC = awrt 23.2		A1
	140 22.2			M1
	Area = $\frac{1}{2} \times 40 \times "23.2" \times \sin 98$			(DEP)
		Area = 459, 460, 461		A1

28	Methods NOT using 90° triangle (2)		6	
	Area = $\frac{1}{2} \times AB \times AC \times \sin 28$:			M1
	$\angle ABC = 62 + [180 - (90 + 54)]$			
		$\angle ABC = 98$		A1
	_ 40 <i>AC</i>			M1
	$\frac{1}{\sin 54} = \frac{1}{\sin 98}$			
		AC = awrt 49.0		A1
	1 40!! 40 0!!			M1
	Area = $\frac{1}{2} \times 40 \times "49.0" \times \sin 28$			(DEP)
		Area = 459, 460, 461		A1

28	Methods NOT using 90° triangle (3)		6	
	$\mathbf{Area} = \frac{1}{2} \times BC \times AC \times \sin 54$			M1
	$\frac{40}{\sin 54} = \frac{BC}{\sin 28}$			
		BC = awrt 23.2		A1
	$\frac{40}{\sin 54} = \frac{AC}{\sin 98}$			M1
		AC = awrt 49.0		A1
	Area = $\frac{1}{2}$ × "23.2" × "49.0" × sin 54			M1 (DEP)
		Area = 459, 460, 461		A1

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom